添加 check_market_data.py 脚本用于检查行情数据完整性 实现 Tushare API 管理、交易日历缓存和在线数据检查功能 添加 log_style.py 模块提供灵活的日志配置功能 创建相关批处理文件和日志文件
315 lines
12 KiB
Python
315 lines
12 KiB
Python
import os
|
||
import csv
|
||
import datetime
|
||
import logging
|
||
from pathlib import Path
|
||
from log_style import setup_logger
|
||
import pandas as pd
|
||
import tushare as ts
|
||
import time
|
||
from functools import lru_cache
|
||
|
||
# 配置日志
|
||
logger = setup_logger(
|
||
name='market_data_check',
|
||
log_file='market_data_check.log',
|
||
level=logging.INFO,
|
||
log_format='%(asctime)s - %(levelname)s - %(message)s',
|
||
console=True,
|
||
log_dir='.',
|
||
backup_count=3
|
||
)
|
||
logger.propagate = False # 避免日志消息向上传递到父记录器,防止重复输出
|
||
|
||
# Tushare配置
|
||
TUSHARE_TOKENS = [
|
||
'9343e641869058684afeadfcfe7fd6684160852e52e85332a7734c8d' # 主账户
|
||
]
|
||
|
||
# API请求频率控制
|
||
MAX_REQUESTS_PER_MINUTE = 500
|
||
|
||
class TushareManager:
|
||
"""Tushare API管理类,处理账户轮询和请求频率控制"""
|
||
def __init__(self, tokens):
|
||
self.tokens = tokens
|
||
self.current_token_index = 0
|
||
self.last_request_time = time.time()
|
||
self.request_count = 0
|
||
|
||
def get_pro_api(self):
|
||
"""获取Tushare API实例,自动处理账户轮询"""
|
||
# 简单的账户轮询
|
||
token = self.tokens[self.current_token_index]
|
||
self.current_token_index = (self.current_token_index + 1) % len(self.tokens)
|
||
return ts.pro_api(token)
|
||
|
||
def control_request_rate(self):
|
||
"""控制请求频率,确保不超过API限制"""
|
||
current_time = time.time()
|
||
time_since_last_request = current_time - self.last_request_time
|
||
|
||
# 如果超过1分钟,重置计数器
|
||
if time_since_last_request > 60:
|
||
self.request_count = 0
|
||
self.last_request_time = current_time
|
||
|
||
# 如果请求次数超过限制,等待
|
||
if self.request_count >= MAX_REQUESTS_PER_MINUTE:
|
||
wait_time = 60 - time_since_last_request + 1
|
||
logger.info(f"请求频率过高,等待 {wait_time:.1f} 秒")
|
||
time.sleep(wait_time)
|
||
self.request_count = 0
|
||
self.last_request_time = time.time()
|
||
|
||
# 简单的速率限制(每0.1秒一个请求)
|
||
if time_since_last_request < 0.1:
|
||
time.sleep(0.1 - time_since_last_request)
|
||
|
||
self.request_count += 1
|
||
self.last_request_time = current_time
|
||
|
||
# 创建Tushare管理器实例
|
||
tushare_manager = TushareManager(TUSHARE_TOKENS)
|
||
|
||
# 全局变量,用于缓存交易日历
|
||
trade_calendar_cache = None
|
||
trade_calendar_dates = None
|
||
|
||
def get_trade_calendar():
|
||
"""
|
||
一次性获取较大范围的交易日历并缓存到内存
|
||
:return: 交易日历DataFrame
|
||
"""
|
||
global trade_calendar_cache, trade_calendar_dates
|
||
|
||
# 如果已经缓存,直接返回
|
||
if trade_calendar_cache is not None:
|
||
return trade_calendar_cache
|
||
|
||
try:
|
||
# 计算日期范围:过去2年到未来1个月
|
||
today = datetime.datetime.now()
|
||
start_date = (today - datetime.timedelta(days=730)).strftime('%Y%m%d') # 过去2年
|
||
end_date = (today + datetime.timedelta(days=30)).strftime('%Y%m%d') # 未来1个月
|
||
|
||
pro = tushare_manager.get_pro_api()
|
||
tushare_manager.control_request_rate()
|
||
|
||
df = pro.trade_cal(exchange='SSE', start_date=start_date, end_date=end_date)
|
||
if df is None or df.empty:
|
||
logger.warning(f"未获取到{start_date}至{end_date}的交易日历")
|
||
return None
|
||
|
||
# 缓存结果
|
||
trade_calendar_cache = df
|
||
|
||
# 同时创建一个日期集合,方便快速查询
|
||
trade_calendar_dates = set(df[df['is_open'] == 1]['cal_date'].tolist())
|
||
|
||
logger.info(f"成功获取并缓存交易日历: {start_date}至{end_date}")
|
||
return df
|
||
except Exception as e:
|
||
logger.error(f"获取交易日历失败: {str(e)}")
|
||
return None
|
||
|
||
def get_latest_trade_date(file_path):
|
||
"""
|
||
从txt文件中获取最新的交易日期
|
||
:param file_path: 文件路径
|
||
:return: 最新交易日期字符串,如'20251204',如果文件为空返回None
|
||
"""
|
||
try:
|
||
with open(file_path, 'r', encoding='utf-8') as f:
|
||
lines = f.readlines()
|
||
if len(lines) < 2: # 至少需要有表头和一行数据
|
||
logger.warning(f"文件 {file_path} 内容不足")
|
||
return None
|
||
# 第二行是第一行数据(最新的交易日期)
|
||
first_data_line = lines[1].strip()
|
||
if not first_data_line:
|
||
logger.warning(f"文件 {file_path} 数据行为空")
|
||
return None
|
||
# 按制表符分割
|
||
columns = first_data_line.split('\t')
|
||
if len(columns) < 2: # 至少需要有ts_code和trade_date
|
||
logger.warning(f"文件 {file_path} 数据格式不正确")
|
||
return None
|
||
return columns[1]
|
||
except Exception as e:
|
||
logger.error(f"读取文件 {file_path} 时出错: {str(e)}")
|
||
return None
|
||
|
||
def calculate_trading_days_diff(start_date, end_date):
|
||
"""
|
||
计算两个日期之间的交易日数量
|
||
:param start_date: 开始日期,格式YYYYMMDD
|
||
:param end_date: 结束日期,格式YYYYMMDD
|
||
:return: 交易日数量,如果计算失败返回None
|
||
"""
|
||
try:
|
||
# 确保日期格式正确
|
||
start = datetime.datetime.strptime(start_date, '%Y%m%d')
|
||
end = datetime.datetime.strptime(end_date, '%Y%m%d')
|
||
|
||
# 如果开始日期大于结束日期,交换
|
||
if start > end:
|
||
start, end = end, start
|
||
start_date, end_date = end_date, start_date
|
||
|
||
# 获取缓存的交易日历
|
||
calendar_df = get_trade_calendar()
|
||
|
||
if calendar_df is None:
|
||
# 如果获取交易日历失败,使用简单的日期差作为近似值
|
||
days_diff = (end - start).days
|
||
logger.warning(f"无法获取交易日历,使用自然日差近似:{days_diff}天")
|
||
return days_diff
|
||
|
||
# 筛选出指定日期范围内的交易日
|
||
mask = (calendar_df['cal_date'] >= start_date) & (calendar_df['cal_date'] <= end_date) & (calendar_df['is_open'] == 1)
|
||
trading_days_count = calendar_df[mask]['cal_date'].count()
|
||
|
||
return trading_days_count
|
||
except Exception as e:
|
||
logger.error(f"计算交易日差失败: {str(e)}")
|
||
return None
|
||
|
||
def check_online_data_exists(ts_code, trade_date):
|
||
"""
|
||
检查在线数据是否存在
|
||
:param ts_code: 股票代码,如'688800.SH'
|
||
:param trade_date: 交易日期,格式YYYYMMDD
|
||
:return: True表示数据存在,False表示不存在,None表示查询失败
|
||
"""
|
||
try:
|
||
pro = tushare_manager.get_pro_api()
|
||
tushare_manager.control_request_rate()
|
||
|
||
# 查询指定日期的交易数据
|
||
df = pro.daily(ts_code=ts_code, trade_date=trade_date)
|
||
|
||
if df is None or df.empty:
|
||
logger.info(f"在线数据中未找到 {ts_code} {trade_date} 的交易数据")
|
||
return False
|
||
else:
|
||
logger.info(f"在线数据中找到 {ts_code} {trade_date} 的交易数据")
|
||
return True
|
||
except Exception as e:
|
||
logger.error(f"查询在线数据失败 {ts_code} {trade_date}: {str(e)}")
|
||
return None
|
||
|
||
def check_market_data(online_check=False):
|
||
"""
|
||
检查所有行情数据文件的完整性
|
||
|
||
Args:
|
||
online_check: 是否进行在线数据检查,默认False
|
||
"""
|
||
# 设置数据目录
|
||
data_dir = Path(r'D:\gp_data\day')
|
||
|
||
# 获取当天日期(格式:YYYYMMDD)
|
||
today = datetime.datetime.now().strftime('%Y%m%d')
|
||
logger.info(f"开始检查行情数据完整性,当前日期:{today}")
|
||
|
||
# 获取所有txt文件列表
|
||
all_files = list(data_dir.glob('*.txt'))
|
||
total = len(all_files)
|
||
completed = 0
|
||
|
||
# 记录开始时间
|
||
start_time = datetime.datetime.now()
|
||
|
||
# 存储不完整的数据文件
|
||
incomplete_files = []
|
||
|
||
# 遍历目录下的所有txt文件
|
||
for file_path in all_files:
|
||
file_name = file_path.name
|
||
|
||
# 从文件名中提取股票代码(如:688800.SH_daily_data.txt -> 688800.SH)
|
||
ts_code = file_name.split('_')[0]
|
||
|
||
# 获取最新交易日期
|
||
latest_date = get_latest_trade_date(file_path)
|
||
|
||
if latest_date is None:
|
||
incomplete_files.append({
|
||
'file_name': file_name,
|
||
'ts_code': ts_code,
|
||
'latest_date': 'N/A',
|
||
'trading_days_diff': 'N/A',
|
||
'online_data_exists': 'N/A',
|
||
'status': '文件内容异常'
|
||
})
|
||
elif latest_date != today:
|
||
# 计算交易日差
|
||
trading_days_diff = calculate_trading_days_diff(latest_date, today)
|
||
|
||
# 检查在线数据是否存在
|
||
online_data_exists = None
|
||
if online_check:
|
||
online_data_exists = check_online_data_exists(ts_code, today)
|
||
|
||
status = '数据不完整'
|
||
if online_check and online_data_exists:
|
||
status += ',在线数据已更新'
|
||
|
||
incomplete_files.append({
|
||
'file_name': file_name,
|
||
'ts_code': ts_code,
|
||
'latest_date': latest_date,
|
||
'trading_days_diff': trading_days_diff or 'N/A',
|
||
'online_data_exists': '是' if online_data_exists else '否' if online_data_exists is False else '未检查',
|
||
'status': status
|
||
})
|
||
# 移除单个文件的完整日志
|
||
|
||
# 更新进度
|
||
completed += 1
|
||
progress = (completed / total) * 100
|
||
elapsed = (datetime.datetime.now() - start_time).total_seconds()
|
||
|
||
# 显示进度条
|
||
print(f"\r进度: [{'#' * int(progress / 2)}{' ' * (50 - int(progress / 2))}] {progress:.1f}% | 已完成: {completed}/{total} | 耗时: {elapsed:.1f}s", end='', flush=True)
|
||
|
||
# 进度条完成后换行
|
||
print()
|
||
|
||
# 输出结果到CSV文件
|
||
output_file = Path('market_data_check_result.csv')
|
||
with open(output_file, 'w', newline='', encoding='utf-8') as csvfile:
|
||
fieldnames = ['file_name', 'ts_code', 'latest_date', 'trading_days_diff', 'online_data_exists', 'status']
|
||
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
||
|
||
writer.writeheader()
|
||
for file_info in incomplete_files:
|
||
writer.writerow(file_info)
|
||
|
||
total_files = len(list(data_dir.glob('*.txt')))
|
||
logger.info(f"检查完成,共检查 {total_files} 个文件")
|
||
logger.info(f"发现 {len(incomplete_files)} 个未更新到最新的数据文件")
|
||
logger.info(f"检查结果已输出到:{output_file}")
|
||
|
||
# 打印总结
|
||
print(f"\n=== 行情数据检查结果 ===")
|
||
print(f"检查日期:{today}")
|
||
print(f"检查文件总数:{total_files}")
|
||
print(f"未更新到最新的文件数:{len(incomplete_files)}")
|
||
print(f"在线检查功能:{'开启' if online_check else '关闭'}")
|
||
print(f"检查结果已保存到:{output_file}")
|
||
|
||
if incomplete_files:
|
||
print(f"\n未更新到最新的文件列表:")
|
||
print(f"{'文件名称':<30} {'股票代码':<15} {'最新日期':<12} {'交易日差':<12} {'在线数据':<12} {'状态':<20}")
|
||
print("-" * 100)
|
||
for file_info in incomplete_files:
|
||
print(f"{file_info['file_name']:<30} {file_info['ts_code']:<15} {file_info['latest_date']:<12} "
|
||
f"{str(file_info['trading_days_diff']):<12} {file_info['online_data_exists']:<12} {file_info['status']:<20}")
|
||
|
||
if __name__ == "__main__":
|
||
# 默认关闭在线检查功能
|
||
check_market_data()
|
||
# 如果需要开启在线检查功能,可以使用以下方式
|
||
# check_market_data(online_check=True) |