新建回测系统,并提交

This commit is contained in:
2026-01-17 21:37:42 +08:00
commit fe50ea935a
68 changed files with 108208 additions and 0 deletions

263
risk/position_sizing.py Normal file
View File

@@ -0,0 +1,263 @@
"""持仓规模优化模块。
支持多种仓位管理方法:
- equal_weight: 等权分配(默认)
- kelly: Kelly公式需要历史胜率和盈亏比
- volatility_target: 波动率目标(根据股票波动率调整仓位)
使用方法:
position_sizer = PositionSizing(method="equal_weight", max_positions=2)
# 在策略中使用
if position_sizer.can_open(ts_code, cash, price):
shares = position_sizer.calc_shares(ts_code, cash, price, df)
"""
from __future__ import annotations
from typing import Dict, Optional
import pandas as pd
from utils.logger import setup_logger
logger = setup_logger(__name__)
class PositionSizing:
"""持仓规模优化管理器。
支持多种方法:
- equal_weight: 等权分配
- kelly: Kelly公式
- volatility_target: 波动率目标
"""
def __init__(
self,
method: str = "equal_weight",
max_positions: int = 2,
kelly_risk_free: float = 0.03,
kelly_max_fraction: float = 0.25,
volatility_target: float = 0.15,
volatility_window: int = 20,
):
"""初始化持仓规模管理器。
参数:
method: 仓位管理方法 ("equal_weight", "kelly", "volatility_target")
max_positions: 最大持仓数
kelly_risk_free: Kelly公式的无风险利率
kelly_max_fraction: Kelly公式的最大仓位比例防止过度杠杆
volatility_target: 目标波动率(年化)
volatility_window: 计算波动率的窗口期
"""
self.method = method
self.max_positions = max_positions
self.kelly_risk_free = kelly_risk_free
self.kelly_max_fraction = kelly_max_fraction
self.volatility_target = volatility_target
self.volatility_window = volatility_window
# 记录每只股票的历史交易统计用于Kelly公式
self.trade_stats: Dict[str, Dict] = {}
def can_open(self, ts_code: str, cash: float, price: float, current_positions: int) -> bool:
"""判断是否可以开新仓位。
参数:
ts_code: 股票代码
cash: 当前可用现金
price: 当前价格
current_positions: 当前持仓数量
返回:
bool: 是否可以开仓
"""
# 检查仓位是否已满
if current_positions >= self.max_positions:
return False
# 检查资金是否足够买入至少 100 股
min_cost = price * 100
if cash < min_cost:
return False
return True
def calc_shares(
self,
ts_code: str,
cash: float,
price: float,
remain_slots: int,
df: Optional[pd.DataFrame] = None,
) -> int:
"""计算应该买入的股数。
参数:
ts_code: 股票代码
cash: 当前可用现金
price: 当前价格
remain_slots: 剩余可用仓位数
df: 股票历史数据(用于计算波动率等指标)
返回:
int: 买入股数已取整到100的整数倍
"""
if self.method == "equal_weight":
return self._equal_weight_shares(cash, price, remain_slots)
elif self.method == "kelly":
return self._kelly_shares(ts_code, cash, price, remain_slots)
elif self.method == "volatility_target":
return self._volatility_target_shares(ts_code, cash, price, remain_slots, df)
else:
logger.warning(f"未知的仓位管理方法: {self.method},使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
def _equal_weight_shares(self, cash: float, price: float, remain_slots: int) -> int:
"""等权分配:平均分配现金到剩余仓位。
例如现金100万剩余2个仓位每个仓位分配50万
"""
if remain_slots <= 0:
return 0
cash_per_stock = cash / remain_slots
shares = int(cash_per_stock // price)
# A股规则向下取整到100的整数倍
shares = (shares // 100) * 100
return shares
def _kelly_shares(self, ts_code: str, cash: float, price: float, remain_slots: int) -> int:
"""Kelly公式根据历史胜率和盈亏比计算最优仓位。
Kelly% = (胜率 * 盈亏比 - 败率) / 盈亏比
注意:需要积累一定的交易历史才能准确计算。
如果没有历史数据,回退到等权分配。
"""
stats = self.trade_stats.get(ts_code)
if stats is None or stats.get("total_trades", 0) < 10:
# 交易次数不足,使用等权分配
logger.debug(f"{ts_code} 历史交易不足,使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
win_rate = stats.get("win_rate", 0.5)
avg_win = stats.get("avg_win", 0.05)
avg_loss = stats.get("avg_loss", 0.05)
if avg_loss <= 0:
avg_loss = 0.01 # 避免除零
profit_loss_ratio = avg_win / avg_loss
kelly_fraction = (win_rate * profit_loss_ratio - (1 - win_rate)) / profit_loss_ratio
# Kelly公式可能给出负值或过大值需要限制
kelly_fraction = max(0, min(kelly_fraction, self.kelly_max_fraction))
# 考虑剩余仓位数,分配资金
cash_per_stock = cash / remain_slots
kelly_cash = cash_per_stock * kelly_fraction
shares = int(kelly_cash // price)
shares = (shares // 100) * 100
logger.debug(
f"{ts_code} Kelly仓位: {kelly_fraction*100:.2f}%, "
f"胜率={win_rate*100:.1f}%, 盈亏比={profit_loss_ratio:.2f}"
)
return shares
def _volatility_target_shares(
self,
ts_code: str,
cash: float,
price: float,
remain_slots: int,
df: Optional[pd.DataFrame],
) -> int:
"""波动率目标:根据股票波动率调整仓位。
波动率高的股票减小仓位,波动率低的股票增大仓位。
目标:使每个仓位的波动率贡献接近目标波动率。
"""
if df is None or df.empty:
logger.debug(f"{ts_code} 缺少历史数据,使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
# 计算历史波动率(日收益率标准差 * sqrt(252)
if "close" not in df.columns or len(df) < self.volatility_window:
logger.debug(f"{ts_code} 数据不足,使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
returns = df["close"].pct_change().dropna()
if len(returns) < self.volatility_window:
logger.debug(f"{ts_code} 数据不足,使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
# 使用最近 volatility_window 天的数据计算波动率
recent_volatility = returns.tail(self.volatility_window).std() * (252 ** 0.5)
if recent_volatility <= 0:
logger.debug(f"{ts_code} 波动率为0使用等权分配")
return self._equal_weight_shares(cash, price, remain_slots)
# 仓位调整因子 = 目标波动率 / 实际波动率
volatility_factor = self.volatility_target / recent_volatility
volatility_factor = max(0.5, min(volatility_factor, 2.0)) # 限制在 [0.5, 2.0]
# 基础等权分配 * 波动率因子
base_shares = self._equal_weight_shares(cash, price, remain_slots)
adjusted_shares = int(base_shares * volatility_factor)
adjusted_shares = (adjusted_shares // 100) * 100
logger.debug(
f"{ts_code} 波动率调整: 实际={recent_volatility*100:.2f}%, "
f"目标={self.volatility_target*100:.2f}%, 因子={volatility_factor:.2f}"
)
return adjusted_shares
def update_trade_stats(self, ts_code: str, profit_pct: float) -> None:
"""更新交易统计用于Kelly公式
参数:
ts_code: 股票代码
profit_pct: 本次交易盈亏比例(正数为盈利,负数为亏损)
"""
if ts_code not in self.trade_stats:
self.trade_stats[ts_code] = {
"total_trades": 0,
"wins": 0,
"losses": 0,
"total_win": 0.0,
"total_loss": 0.0,
}
stats = self.trade_stats[ts_code]
stats["total_trades"] += 1
if profit_pct > 0:
stats["wins"] += 1
stats["total_win"] += profit_pct
else:
stats["losses"] += 1
stats["total_loss"] += abs(profit_pct)
# 计算平均值
stats["win_rate"] = stats["wins"] / stats["total_trades"]
stats["avg_win"] = stats["total_win"] / stats["wins"] if stats["wins"] > 0 else 0.05
stats["avg_loss"] = stats["total_loss"] / stats["losses"] if stats["losses"] > 0 else 0.05
def get_stats(self, ts_code: str) -> Optional[Dict]:
"""获取某只股票的交易统计。"""
return self.trade_stats.get(ts_code)
def clear_stats(self) -> None:
"""清空所有交易统计。"""
self.trade_stats.clear()