提交新建内容

This commit is contained in:
2025-09-01 12:08:41 +08:00
commit 198ec2dc8f
14 changed files with 1911 additions and 0 deletions

248
quote_manager.py Normal file
View File

@@ -0,0 +1,248 @@
"""
行情数据管理模块 - 支持多数据源(Tushare/AKShare)
"""
import pandas as pd
import tushare as ts
import akshare as ak
from typing import List, Dict, Optional # 添加 Optional 导入
import logging
import time
from enum import Enum, auto
import threading
# 添加 Tushare Token 设置
ts.set_token('9343e641869058684afeadfcfe7fd6684160852e52e85332a7734c8d')
# 通用股票排除规则
STOCK_EXCLUSION_RULES = {
'exclude_st': True, # 排除ST/*ST股票
'exclude_b_share': True, # 排除B股
'exclude_star_market': True, # 排除科创板(688开头)
'exclude_gem': False, # 排除创业板(300开头) - 默认不排除
'exclude_bj': True, # 排除北交所股票
'custom_exclusions': [] # 自定义排除列表
}
class DataSource(Enum):
TUSHARE = "tushare"
AKSHARE = "akshare"
LOCAL = "local"
class QuoteManager:
_instance = None
_lock = threading.Lock()
def __new__(cls):
with cls._lock:
if cls._instance is None:
cls._instance = super().__new__(cls)
cls._instance._init_manager()
return cls._instance
def _init_manager(self):
self._cache = {}
self._cache_ttl = 60
self._data_source = DataSource.TUSHARE
self.max_retries = 3 # 默认最大重试次数
self.retry_interval = 2 # 默认重试间隔(秒)
def set_retry_policy(self, max_retries: int, retry_interval: float = 2):
"""设置重试策略"""
self.max_retries = max_retries
self.retry_interval = retry_interval
def set_data_source(self, source: DataSource):
"""设置数据源"""
self._data_source = source
def get_realtime_quotes(self, codes: List[str]) -> Dict[str, pd.DataFrame]:
"""获取实时行情(带重试机制)"""
last_error = None
for attempt in range(self.max_retries):
try:
if self._data_source == DataSource.TUSHARE:
return self._get_tushare_quotes(codes)
elif self._data_source == DataSource.AKSHARE:
return self._get_akshare_quotes(codes)
else:
raise ValueError("不支持的数据源")
except Exception as e:
last_error = e
if attempt < self.max_retries - 1: # 不是最后一次尝试
time.sleep(self.retry_interval)
continue
raise Exception(f"获取行情失败(尝试{self.max_retries}次): {str(last_error)}")
def _get_tushare_quotes(self, codes: List[str], max_retries: int = 3, retry_interval: float = 2) -> Dict[str, pd.DataFrame]:
"""使用 Tushare 获取实时行情(带重试机制)"""
for attempt in range(max_retries):
try:
df = ts.realtime_quote(ts_code=','.join(codes))
if df is None or df.empty:
raise Exception("返回数据为空")
return {row['TS_CODE']: row for _, row in df.iterrows()}
except Exception as e:
if attempt < max_retries - 1:
time.sleep(retry_interval)
continue
raise Exception(f"Tushare 行情获取失败(尝试{max_retries}次): {str(e)}")
def _get_akshare_quotes(self, codes: List[str]) -> Dict[str, pd.DataFrame]:
"""使用 AKShare 获取实时行情"""
# 这里需要实现 AKShare 的获取逻辑
raise NotImplementedError("AKShare 实现待完成")
def _convert_akshare_format(self, row) -> Dict:
"""将AKShare数据格式转换为统一格式"""
return {
'TS_CODE': row['代码'],
'PRICE': row['最新价'],
'OPEN': row['今开'],
'PRE_CLOSE': row['昨收'],
'HIGH': row['最高'],
'LOW': row['最低'],
'VOLUME': row['成交量']
}
# ... existing code ...
def _get_tushare_all_stocks(self) -> List[str]:
"""使用Tushare获取所有A股股票列表"""
try:
pro = ts.pro_api() # 获取Tushare专业版API接口
# 获取所有股票列表
stock_basic = pro.stock_basic(exchange='', list_status='L',
fields='ts_code,symbol,name,area,industry,list_date')
# 根据通用规则过滤股票
filtered_stocks = self._filter_stocks(stock_basic['ts_code'].tolist())
return filtered_stocks
except Exception as e:
logging.error(f"获取股票列表失败: {str(e)}")
return []
def _filter_stocks(self, stock_list: List[str]) -> List[str]:
"""
根据通用规则过滤股票列表
:param stock_list: 原始股票列表
:return: 过滤后的股票列表
"""
filtered_stocks = []
for stock in stock_list:
exclude = False
# 检查是否在自定义排除列表中
if stock in STOCK_EXCLUSION_RULES.get('custom_exclusions', []):
exclude = True
# 检查是否排除ST/*ST股票
if STOCK_EXCLUSION_RULES.get('exclude_st', True):
# 注意这里需要获取股票名称来判断是否为ST股票
# 在实际应用中,您可能需要通过其他方式获取股票名称
pass # ST股票的判断需要额外的数据支持
# 检查是否排除B股
if STOCK_EXCLUSION_RULES.get('exclude_b_share', True) and stock.endswith('.BJ'):
exclude = True
# 检查是否排除科创板股票(688开头)
if STOCK_EXCLUSION_RULES.get('exclude_star_market', True) and stock.startswith('688'):
exclude = True
# 检查是否排除创业板股票(300开头)
if STOCK_EXCLUSION_RULES.get('exclude_gem', False) and stock.startswith('300'):
exclude = True
# 检查是否排除北交所股票
if STOCK_EXCLUSION_RULES.get('exclude_bj', True) and stock.endswith('.BJ'):
exclude = True
# 如果没有被排除,则添加到结果列表中
if not exclude:
filtered_stocks.append(stock)
return filtered_stocks
def set_exclusion_rules(self, rules: Dict):
"""
设置股票排除规则
:param rules: 排除规则字典
"""
global STOCK_EXCLUSION_RULES
STOCK_EXCLUSION_RULES.update(rules)
def get_exclusion_rules(self) -> Dict:
"""
获取当前的股票排除规则
:return: 排除规则字典
"""
global STOCK_EXCLUSION_RULES
return STOCK_EXCLUSION_RULES.copy()
def get_quote(self, code: str) -> Optional[Dict]:
"""获取单个股票行情(兼容旧接口)"""
try:
quotes = self.get_realtime_quotes([code])
if not quotes or code not in quotes:
return None
row = quotes[code]
return {
'price': row['PRICE'],
'avg_price': (row['OPEN'] + row['PRE_CLOSE']) / 2,
'volume': row['VOLUME']
}
except Exception as e:
logging.error(f"获取股票{code}行情失败: {str(e)}")
return None
def get_daily_data(self, codes: List[str], start_date: str = None, end_date: str = None,
max_retries: Optional[int] = None, retry_interval: Optional[float] = None) -> Dict[
str, pd.DataFrame]:
"""获取股票日线数据"""
# 如果没有传入参数,则使用实例的默认值
max_retries = max_retries if max_retries is not None else self.max_retries
retry_interval = retry_interval if retry_interval is not None else self.retry_interval
try:
if self._data_source == DataSource.TUSHARE:
return self._get_tushare_daily_data(codes, start_date, end_date, max_retries, retry_interval)
elif self._data_source == DataSource.AKSHARE:
return self._get_akshare_daily_data(codes, start_date, end_date, max_retries, retry_interval)
else:
raise ValueError("不支持的数据源")
except Exception as e:
logging.error(f"获取日线数据失败: {str(e)}")
return {}
def _get_tushare_daily_data(self, codes: List[str], start_date: str = None, end_date: str = None,
max_retries: int = 3, retry_interval: float = 2) -> Dict[str, pd.DataFrame]:
"""使用Tushare获取日线数据"""
daily_data = {}
pro = ts.pro_api() # 获取Tushare专业版API接口
for code in codes:
for attempt in range(max_retries):
try:
# 如果没有指定日期范围默认获取最近30天的数据
if not end_date:
end_date = pd.Timestamp.now().strftime('%Y%m%d')
if not start_date:
start_date = (pd.Timestamp.now() - pd.Timedelta(days=30)).strftime('%Y%m%d')
df = pro.daily(ts_code=code, start_date=start_date, end_date=end_date)
if df is not None and not df.empty:
df = df.sort_values('trade_date')
daily_data[code] = df
break # 成功获取数据,跳出重试循环
except Exception as e:
if attempt < max_retries - 1:
time.sleep(retry_interval)
continue
logging.error(f"获取{code}日线数据失败: {str(e)}")
break
return daily_data
def _get_akshare_daily_data(self, codes: List[str], start_date: str = None, end_date: str = None,
max_retries: int = 3, retry_interval: float = 2) -> Dict[str, pd.DataFrame]:
"""使用AKShare获取日线数据"""
# AKShare实现待完成
raise NotImplementedError("AKShare日线数据获取待实现")